Turunan Trigonometri – Pengertian, Rumus, Dan Contoh Soalnya

Posted on

Rumusrumus.com kali ini akan membahas tentang materi pengertian turunan trigonometri yang meliputi rumus turunan beserta contoh soal turunan trigonometri dan pembahasannya lengkap.

Pengertian Turunan Trigonometri

Turunan fungsi trigonometri yaitu proses matematis untuk menemukan turunan pada suatu fungsi trigonometri ataupun tingkat perubahan terkait dengan suatu variabelnya. Fungsi trigonometri yang biasa digunakan yaitu sin(x), cos(x) dan tan(x). Contoh: turunan “f(x) = sin(x)” ditulis “f ′(a) = cos(a)”. “f ′(a)” yaitu tingkat perubahan sin(x) di titik “a”.

turunan trigonometri
turunan trigonometri

Semua turunan fungsi trigonometri lingkaran bisa ditemui dengan cara memakai turunan sin(x) dan cos(x). hasil-bagi lalu dpakai untuk menemukan turunannya. Sementara itu, pencarian turunan fungsi trigonometri invers membutuhkan diferensiasi implisit dan turunan fungsi trigonometri biasa.

Rumus Turunan Fungsi Trigonometri

Berikut ialah beberapa turunan dasar trigonometri yang hatus diketahui sebelum memecahkan persoalan turunan trigonometri:

f (x) = sin x → f ‘(x) = cos x
f (x) = cos x → f ‘(x) = −sin x
f (x) = tan x → f ‘(x) = sec2 x
f (x) = cot x → f ‘(x) = −csc2x
f (x) = sec x → f ‘(x) = sec x . tan x
f (x) = csc x → f ‘(x) = −csc x . cot x.

Perluasan Rumus Turunan Fungsi Trigonometri I
Misalkan u merupakan fungsi yang bisa diturunkan terhadap x, dimana u’ yaitu turunan u terhadap x, Jadi :

f (x) = sin u → f ‘(x) = cos u . u’
f (x) = cos u → f ‘(x) = −sin u . u’
f (x) = tan u → f ‘(x) = sec2u . u’
f (x) = cot u → f ‘(x) = −csc2 u . u’
f (x) = sec u → f ‘(x) = sec u tan u . u’
f (x) = csc u → f ‘(x) = −csc u cot u . u’.

Perluasan Rumus Turunan Fungsi Trigonometri II
Berikut ialah turunan dari fungsi rumus sin cos tan trigonometri pada variabel sudut ax +b, dimana a dan b yaitu bilangan real dengan a≠0 :

f (x) = sin (ax + b) → f ‘(x) = a cos (ax + b)
f (x) = cos (ax + b) → f ‘(x) = -a sin (ax + b)
f (x) = tan (ax + b) → f ‘(x) = a sec2 (ax +b)
f (x) = cot (ax + b) → f ‘(x) = -a csc2 (ax+b)
f (x) = sec (ax + b) → f ‘(x) = a tan (ax + b) . sec (ax + b)
f (x) = csc (ax + b) → f ‘(x) = -a cot (ax + b) . csc (ax + b).

Fungsi Turunan

fungsi turunan trigonometri
fungsi turunan trigonometri

Contoh Soal Turunan Trigonometri

Contoh Soal 1
Tentukan turunan y = cos x2
Jawab
Misal :
u = x2 ⇒ u’ = 2x

y’ = −sin u . u’
y’ = −sin x2 . 2x
y’ = −2x sin x2

Contoh Soal 2
Tentukan turunan y = sin 4x !
Jawab
Misal :
u = 4x ⇒ u’ = 4

y’ = cos u . u’
y’ = cos 4x . 4
y’ = 4cos 4x

Contoh Soal 3
Tentukan turunan y = sec 1/2x
Jawab
Misal :
u = 12x ⇒ u’ = 12

y’ = sec u tan u . u’
y’ = sec 1/2x tan 1/2x . 1/2
y’ = 1/2sec 1/2x tan 1/2x

Contoh Soal 4
Tentukan turunan y = tan (2x+1)
Jawab
Misal :
u = 2x + 1 ⇒ u’ = 2

y’ = sec2u . u’
y’ = sec2(2x+1) . 2
y’ = 2sec2(2x+1)

Contoh Soal 5
Tentukan turunan y = sin7(4x−3)
Jawab
y = [sin (4x−3)]7

Misal :
u(x) = sin (4x−3) ⇒ u'(x) = 4 cos (4x−3)
n = 7

y’ = n [u(x)]n-1. u'(x)
y’ = 7 [sin (4x−3)]7-1 . 4 cos (4x−3)
y’ = 28 sin6 (4x−3) cos (4x−3)

Demikianlah penjelasan tentang turunan trigonometri dari Rumusrumus.com, Semoga bermanfaat

Artikel Lainya :


Baca Juga :